Estimation of the physical properties of nanocomposites by finite-element discretization and Monte Carlo simulation.

نویسندگان

  • P Spanos
  • P Elsbernd
  • B Ward
  • T Koenck
چکیده

This paper reviews and enhances numerical models for determining thermal, elastic and electrical properties of carbon nanotube-reinforced polymer composites. For the determination of the effective stress-strain curve and thermal conductivity of the composite material, finite-element analysis (FEA), in conjunction with the embedded fibre method (EFM), is used. Variable nanotube geometry, alignment and waviness are taken into account. First, a random morphology of a user-defined volume fraction of nanotubes is generated, and their properties are incorporated into the polymer matrix using the EFM. Next, incremental and iterative FEA approaches are used for the determination of the nonlinear properties of the nanocomposite. For the determination of the electrical properties, a spanning network identification algorithm is used. First, a realistic nanotube morphology is generated from input parameters defined by the user. The spanning network algorithm then determines the connectivity between nanotubes in a representative volume element. Then, interconnected nanotube networks are converted to equivalent resistor circuits. Finally, Kirchhoff's current law is used in conjunction with FEA to solve for the voltages and currents in the system and thus calculate the effective electrical conductivity of the nanocomposite. The model accounts for electrical transport mechanisms such as electron hopping and simultaneously calculates percolation probability, identifies the backbone and determines the effective conductivity. Monte Carlo analysis of 500 random microstructures is performed to capture the stochastic nature of the fibre generation and to derive statistically reliable results. The models are validated by comparison with various experimental datasets reported in the recent literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Applying Point Estimation and Monte Carlo Simulation Methods in Solving Probabilistic Optimal Power Flow Considering Renewable Energy Uncertainties

The increasing penetration of renewable energy results in changing the traditional power system planning and operation tools. As the generated power by the renewable energy resources are probabilistically changed, the certain power system analysis tolls cannot be applied in this case.  Probabilistic optimal power flow is one of the most useful tools regarding the power system analysis in presen...

متن کامل

Computational Studies on Mechanical Properties of Carbon-based Nanostructures Reinforced Nanocomposites

Computational methods can play a significant role in characterization of the carbon-based nanocomposites by providing simulation results. In this paper, we prepared a brief review of the mechanical properties of carbon nanotubes (CNTs), Graphene, and coiled carbon nanotube (CCNTs) reinforced nanocomposites. Varies simulation studies in mechanical properties of nanocomposites including represent...

متن کامل

Kinetic Monte Carlo Simulation of Oxalic Acid Ozonationover Lanthanum-based Perovskitesas Catalysts

Kinetic Monte Carlo simulation was applied to investigation of kinetics and mechanism of oxalic acid degradation by direct and heterogeneous catalytic ozonation. La-containing perovskites including LaFeO3, LaNiO3, LaCoO3 and LaMnO3 was studied as catalyst for oxalic acid ozonation. The reaction kinetic mechanisms of each abovementioned catalytic systems has been achieved. The rate constants val...

متن کامل

Estimation of penetration rate of tunnel boring machines using Monte-Carlo simulation method

One of the most important parameters used for determining the performance of tunnel boring machines (TBMs) is their penetration rate. The parameters affecting the penetration rate can be divided in two categories. The first category is the controllable parameters such as the TBM technical characteristics, and type and geometry of the tunnel, and the second one is the uncontrollable parameters s...

متن کامل

Thorax organ dose estimation in computed tomography based on patient CT data using Monte Carlo simulation

Background:  This study presents patient specific and organ dose estimation in computed tomography (CT) imaging of thorax directly from patient CT image using Monte Carlo simulation.  Patient's CT image is considered as the patient specific phantom and the best representative of patient physical index in order to calculate specific organ dose. Materials and Methods: EGSnrc /BEAMnr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 371 1993  شماره 

صفحات  -

تاریخ انتشار 2013